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Abstract

The Gauss-Wantzel Theorem states the necessary and sufficient condition on n for a

regular n-gon to be constructible using a straight-edge and compass. Specifically, the

theorem states that a regular n-gon is constructible if and only if n = 2ap1p2 . . . pk for

some a ∈ N and distinct Fermat primes p1, p2 . . . pk such that pi ̸= pj for any i ̸= j. A

proof of the theorem can be found in multiple sources; however, the clarity of reasoning

is often compromised on due to concision requirements. This paper aims to delineate

a complete proof of the Gauss-Wantzel Theorem using ideas from group theory, Galois

theory, field extensions, and cyclotomic fields.
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1 Introduction

This paper tackles the Gauss-Wantzel Theorem, which states:

Theorem 1.1 (Gauss-Wantzel). A regular n-gon is constructible with straightedge

and compass if and only if n is the product of a power of 2 and zero or more distinct

Fermat primes.

We present a proof which uses the properties and methods of field theory.

2 Reimagining the Problem

Constructing a regular n-gon is equivalent to constructing n equally spaced points on

the unit circle (from which a regular n-gon can be obtained by connecting the points).

These n equally spaced points are precisely the nth roots of unity. An nth root of unity

is written as

ζkn = e2iπ
k
n (1)

for some k ∈ {1, 2, . . . , n}. The n different values of k correspond to the nth roots of

unity, which are roots of the equation xn − 1 = 0.

Definition 2.2 (Primitive Roots). An nth root of unity is said to be primitive if and

only if it can generate all other nth roots under multiplication. The simplest primitive

nth root is ζn = e
2iπ
n . All primitive nth roots take the form

ζkn = e2iπ
k
n (2)

with the condition that gcd(k, n) = 1. That is, k must be coprime to n. This property

follows from its analogy in group theory:
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Theorem 2.3. Given a generator g of group G such that |G| = n, gk is a generator if

and only if gcd(k, n) = 1.

Definition 2.4. The nth cyclotomic field, Q(ζn), is an extension field of Q obtained

by adjoining a primitive nth root of unity ζn to the rationals.

3 Extension Field Q(ζn)

Definition 3.1. Let Q[x] denote the field of polynomials with coefficients in Q.

We can attempt to rewrite Q(ζn) as Q[x]/⟨p(x)⟩, where p(x) is the minimal polynomial

of ζn over Q and ⟨p(x)⟩ denotes the ideal generated by p(x).

Definition 3.2. The nth cyclotomic polynomial, Φn(x), is the unique irreducible

polynomial with integer coefficients that is a divisor of xn − 1 but is not a divisor of

xk − 1 for any k < n, which makes it the minimal polynomial of ζn over Q. The nth

cyclotomic polynomial is given by

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(
x− ζkn

)
. (3)

All primitive nth roots and only primitive nth roots are roots of Φn(x).
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4 Interesting Properties of Φn(x)

It is insightful to consider Φn(x) for a few small values of n:

Φ1(x) = x− 1

Φ2(x) = x+ 1

Φ3(x) = x2 + x+ 1

Φ4(x) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x+ 1

Φ6(x) = x2 − x+ 1

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

(4)

An interesting observation to note is that all of these polynomials have coefficients

only in {−1, 0, 1}. One might think that this property always holds for all n. However,

interestingly, this pattern holds up till n = 104 but fails at n = 105, for which we have:

Φ105(x) = x48 + x47 + x46 − x43 − x42 − 2x41 − . . . (5)

This −2x41 term is the first one in all of Φn(x), for n ≤ 105, to have a coefficient other

than −1, 0, or 1. This is particularly interesting because 105 = 3 × 5 × 7: 105 is the

first integer to have 3 distinct odd prime factors. This idea is explained by:

Theorem 4.1 (Migotti). If n has at most two distinct odd prime factors, then the

coefficients of Φn(x) are all in {−1, 0, 1}.

While this theorem does not guarantee that a number with three or more distinct odd

prime factors will have a term with coefficient other than −1, 0, or 1, it does explain

why the pattern discussed above holds till n = 104.
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Another interesting observation from Eq.(4) is that if p is prime, then Φp(x) contains

all terms with exponent less than p. This pattern actually holds for all primes p.

Characterizing the nth cyclotomic polynomial is not trivial and is an interesting avenue

for research. Some basic generalizations are:

• If p is prime, then

Φp(x) =
n−1∑
k=0

xk (6)

• If n > 1 is odd, then

Φ2n(x) = Φn(−x) (7)

Current research in cyclotomic polynomials is concerned with the coefficients of Φn(x).

In particular, the main motivation is the maximal coefficient of Φn(x).

Definition 4.2. For n ∈ N, let A(n) denote the maximal coefficient (in absolute value)

of the nth cyclotomic polynomial Φn(x).

Theorem 4.3 (1895, A.S. Bang). Let 3 ≤ p ≤ q ≤ r be three prime numbers. Then,

A(pqr) ≤ p − 1. This implies the existence of M(p) := maxp≤q≤r A(pqr) such that

1 ≤ M(p) ≤ p− 1. In this case, Φpqr(x) is called ternary.

Conjecture 4.4 (Sister Beiter). Given conditions from Theorem 4.3, M(p) ≤ 2
3
p.

This conjecture is an open problem, although a preprint from as recently as 2023 claims

to prove it and even gives the additional proposition that

lim
p→∞

M(p)

p
=

2

3
. (8)
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A fundamental relation involving cyclotomic polynomials is as follows. It is very similar

to a theorem commonly used in number theory:

∑
d|n

ϕ(d) = n (9)

The analogue for cyclotomic polynomials is

xn − 1 =
n∏

k=1

(
x− ζkn

)
=
∏
d|n

∏
1≤k≤n

gcd(k,n)=d

(
x− ζkn

)

=
∏
d|n

Φn
d
(x)

=
∏
d|n

Φd(x).

(10)

The third step arises from the definition

Φn
d
(x) =

∏
1≤k≤n

gcd(k,n)=d

(
x− ζkn

)
. (11)

5



5 The Forward Implication

The Gauss-Wantzel Theorem is a biconditional statement. That is, an if and only if

statement. Hence, we must individually prove both directions of the biconditional.

First, we prove the forward direction.

5.1 Constructing the Field Extension

Assume that a regular n-gon is constructible. Equivalently, ζn is constructible, and the

field extension Q(ζn)/Q is constructible. Since

Q(ζn) = Q[x]/⟨Φn(x)⟩, (12)

the degree of the field extension Q(ζn)/Q is the degree of Φn(x), which is the number

of its distinct roots, which, recalling the definition of Φn(x), is exactly the number of

primitive nth roots of unity, which is the number of k < n such that gcd(k, n) = 1.

That is, Euler’s totient function. Hence, the degree of the field extension is given by

[Q(ζn) : Q] = ϕ(n). (13)

We can obtain the extension Q(ζn)/Q through a chain of m field extensions:

Q ⊆ K0 ⊆ K1 ⊆ . . . ⊆ Km = Q(ζn) (14)

By the characterization of constructible numbers, only quadratic field extensions can

be constructed. That is, each extension [Ki+1 : Ki] = 2.
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Theorem 5.1 (Tower Rule). Let K ⊆ L ⊆ M be a tower of three fields. Then,

[M : K] = [M : L] · [L : K] (15)

Using this law, for the chain of quadratic field extensions in Eq.(14), we have:

[Q(ζn) : Q] = 2m+1

=⇒ ϕ(n) = 2m+1

(16)

5.2 ϕ(n) a Power of Two

Consider the prime factorization of any positive integer n:

n = 2a
k∏

i=1

peii (17)

where p1, p2, . . . , pk are distinct odd primes for k ∈ N≥0, ei ≥ 1 for all i, and a ≥ 0.

(Note: we include the case in which pi does not exist: that is, n = 2a is possible).

Then, we have

ϕ(n) = ϕ

(
2a

k∏
i=1

peii

)

= 2a−1 ·
k∏

i=1

pei−1
i ·

k∏
j=1

(pj − 1)

(18)

But we know ϕ(n) = 2b for some b ∈ N.

=⇒ 2a−1 ·
k∏

i=1

pei−1
i ·

k∏
j=1

(pj − 1) = 2b (19)
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Notice that pei−1
i > 1 and is odd if and only if ei > 1. But an odd integer greater than

one cannot divide a power of two. Hence, ei = 1 for all i.

=⇒
k∏

j=1

(pj − 1) = 2b−a+1. (20)

Only a power of two divides a power of two. Hence, (pj − 1) = 2cj for some cj ∈ N, for

all j.

=⇒ pj = 2cj + 1 (21)

Hence, all primes pi are distinct Fermat primes. Recall that

n = 2a
k∏

i=1

peii

= 2a
k∏

i=1

pi

(22)

for k ∈ N≥0.

Thus, n is the product of a power of 2 and zero or more distinct Fermat primes.

In conclusion, if a regular n-gon is constructible, then n is the product of a power of 2

and zero or more distinct Fermat primes.

It remains to prove the converse to achieve if and only if.
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6 The Converse Statement

To prove the converse, we must first assume that n is the product of a power of 2 and

zero or more distinct Fermat primes. That is,

n = 2a
k∏

i=1

pi (23)

where p1 . . . pk are distinct Fermat primes for k ∈ N≥0. Then,

=⇒ ϕ(n) = 2a−1

k∏
i=1

(pi − 1) (24)

Since pi is a Fermat prime for all i, pi = 2bi + 1 for some bi ∈ N.

=⇒ ϕ(n) = 2a−1

k∏
i=1

(
2bi + 1− 1

)
= 2a−1

k∏
i=1

2bi

= 2a−1+
∑k

i=1 bi

(25)

Hence, ϕ(n) is a power of 2.

From Eq.(13), since ϕ(n) = [Q(ζn) : Q], the degree of Q(ζn)/Q is a power of 2.

6.1 Introduction to Galois Theory

Proving the converse statement of the Gauss-Wantzel Theorem is not trivial, because

it requires some tools of Galois theory along with more advanced group theory.

Galois theory connects group theory and field theory. This connection is the funda-

mental theorem of Galois theory, which will be examined in detail and applied to our
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proof in Section 6.3. For now, it’s important to establish a few definitions.

Definition 6.1. A splitting field of a polynomial p(x) of degree n over a field K is a

field extension L of K of minimal degree over which p(x) factors into linear factors:

p(x) = c
n∏

i=1

(x− ai) (26)

where c ∈ K and for each i, we have ai ∈ L with ai not necessarily distinct and such

that the roots ai generate the field extension L over K. The extension L/K is then of

minimal degree in which p(x) splits as shown above.

Definition 6.2. A homomorphism is a structure-preserving map between two algebraic

structures of the same type. Formally, given two structures ⟨G1, ⋆⟩ and ⟨G2, ∗⟩, a map

f : G1 → G2 is a homomorphism if and only if f(x⋆ y) = f(x) ∗ f(y) for all x, y ∈ G1.

Definition 6.3. An isomorphism is a bijective homomorphism.

Definition 6.4. An automorphism of structure S is an isomorphism of S onto itself.

In other words, an automorphism α of S is the isomorphism α : S → S.

Definition 6.5. Given a prime number p, a p-group is a group in which the order of

every element is a power of p.

Corollary of 6.5. A finite group G is a p-group if and only if |G| = pk for some

k ∈ N≥0.

Theorem 6.6 (Emil Artin). E/F is a Galois extension if E is a splitting field of a

separable polynomial with coefficients in F .

Definition 6.7. Let E be an extension of a field F . An automorphism of E/F is

defined as an automorphism of E that fixes F pointwise. Formally, an automorphism
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of E/F is an isomorphism f : E → E such that f(x) = x for each x ∈ F .

Definition 6.8 (Galois group). The set of all automorphisms of E/F forms a group

under function composition. This group is denoted by Aut(E/F ). If E/F is a Galois

extension, then Aut(E/F ) is termed the Galois group of E/F and is usually denoted

by Gal(E/F ).

A fact that follows intuitively from the definition of Φn(x) is that the extension field

Q(ζn) is the splitting field of Φn(x), a polynomial with coefficients in Q. By Theorem

6.6, Q(ζn)/Q is a Galois extension.

Additionally, the order of Gal(Q(ζn)/Q) is simply [Q(ζn) : Q], which is a power of 2 as

proven earlier. By Corollary of 6.5, Gal(Q(ζn)/Q) is a 2-group.

A lemma we require to proceed is the following version of Sylow’s First Theorem.

Theorem 6.9 (Sylow). A finite group G whose order |G| is divisible by pk for some

k ∈ N has a subgroup of order pk.
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7 Construction of Subgroups

We know that 2k divides 2m if m > k. By Sylow (Theorem 6.9), setting G =

Gal (Q(ζn)/Q), we have m distinct subgroups Hi ⩽ G, expressed by the set

{Hi : |Hi| = 2i, i ∈ {0, 1, . . . ,m}}. (27)

By iteratively setting G = Hi for each i in Theorem 6.9, we can prove that Hi−1 is a

subgroup of Hi. Hence, there exists a chain of subgroups

{id} = H0 ⩽ H1 ⩽ . . . ⩽ Hm−1 ⩽ Hm = Gal (Q(ζn)/Q) . (28)

where id is the identity automorphism.

7.1 Fundamental Theorem of Galois Theory (FTGT)

The fundamental theorem of Galois theory, in essence, states that given a finite Galois

extension E/F , there is a one-to-one correspondence between its intermediate fields

(fields K satisfying F ⊆ K ⊆ E) and subgroups of its Galois group.

For finite extensions E/F , the correspondence can be described explicitly as follows.

• For any subgroup H of Gal(E/F ), the corresponding fixed field, denoted EH , is

the set of those elements of E which are fixed by every automorphism in H.

• For any intermediate field K of E/F , the corresponding subgroup is Aut(E/K);

that is, the set of those automorphisms in Gal(E/F ) which fix every element of

K.

The fundamental theorem states that this correspondence is one-to-one if and only if

E/F is a Galois extension.
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7.2 Application of FTGT

To apply this fundamental theorem to our proof, let F = Q and E = Q(ζn).

We showed on the previous page that Q(ζn)/Q is a Galois extension. Hence, the corre-

spondence of the fundamental theorem is indeed one-to-one. Thus, for each subgroup

Hi in the chain of subgroups in Eq.(28), there exists a corresponding subfield Ki which

is the fixed field of Hi. Hence, we can form a corresponding chain of field extensions

Q = Km ⊆ Km−1 ⊆ . . . ⊆ K1 ⊆ K0 = Q(ζn) (29)

such that each individual field extension Ki/Ki+1 has order

[Ki : Ki+1] =
|Hi+1|
|Hi|

=
2i+1

2i
= 2.

(30)

By the characterization of constructible numbers, all quadratic field extensions of Q

are constructible. We just showed that the extension Q(ζn)/Q can be expressed as a

chain of quadratic field extensions. Hence, ζn is constructible, from which all nth roots

of unity are constructible. Thus, the regular n-gon is constructible.

We have therefore proven the implication that if n is the product of a power of 2 and

zero or more distinct Fermat primes, then a regular n-gon is constructible.

That proves the converse statement, and in combination with the forward statement,

concludes our proof to Theorem 1.1, the Gauss-Wantzel Theorem.
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